如图, ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.(1)求证:平面PCF⊥平面PDE;(2)求证:AE∥平面BCF.
某工艺厂开发一种新工艺品,头两天试制中,该厂要求每位师傅每天制作10件,该厂质检部每天从每位师傅制作的10件产品中随机抽取4件进行检查,若发现有次品,则当天该师傅的产品不能通过.已知李师傅第一天、第二天制作的工艺品中分别有2件、1件次品.(1)求两天中李师傅的产品全部通过检查的概率;(2)若厂内对师傅们制作的工艺品采用记分制,两天全不通过检查得0分,通过1天、2天分别得1分、2分,求李师傅在这两天内得分的数学期望.
甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.4.用击中环数的期望与方差比较两名射手的射击水平.
已知离散型随机变量ξ1的概率分布为
离散型随机变量ξ2的概率分布为
求这两个随机变量数学期望、方差与标准差.
电视台综艺频道组织的闯关游戏,游戏规定前两关至少过一关才有资格闯第三关,闯关者闯第一关成功得3分,闯第二关成功得3分,闯第三关成功得4分.现有一位参加游戏者单独闯第一关、第二关、第三关成功的概率分别为、、,记该参加者闯三关所得总分为ξ.(1)求该参加者有资格闯第三关的概率;(2)求ξ的分布列和数学期望.
有一批数量很大的环形灯管,其次品率为20%,对这批产品进行抽查,每次抽出一件,如果抽出次品,则抽查中止,否则继续抽查,直到抽出次品,但抽查次数最多不超过5次.求抽查次数ξ的分布列.