(本小题满分12分)四川灾后重建工程督导评估小组五名专家被随机分配到A、B、C、D四所不同的学校进行重建评估工作,要求每所学校至少有一名专家。(1)求评估小组中甲、乙两名专家同时被分配到A校的概率;(2)求评估小组中甲、乙两名专家不在同一所学校的概率;(3)设随机变量为这五名专家到A校评估的人数,求的数学期望E。
(本小题满分12分) 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品。从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表: 甲厂:
乙厂:
(1)试分别估计两个分厂生产的零件的优质品率; (2)由以上统计数据填入答题卡的列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”。
(本小题满分12分))已知椭圆C过点,两个焦点为,,O为坐标原点。 (I)求椭圆C的方程; (2)直线l过 点A(—1,0),且与椭圆C交于P,Q两点,求△BPQ面积的最大值。
(本小题满分12分) 如图,四棱锥,≌,在它的俯视图中,,,. ⑴求证:是直角三角形;⑵求四棱锥的体积.
(本小题满分12分已知等差数列{}中,求{}前n项和
(本小题满分10分) 已知函数.求的单调区间;