已知Rt△ABC中,∠ACB=90°中,AC=2,BC=4,点D在BC边上,且∠CAD=∠B.(1) 求AD的长. (2) 取AD、AB的中点E、F,联结CE、CF、EF,求证:△CEF∽△ADB.
已知:如图,AB是⊙O的直径,点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.(1)试说明:DE=BF;(2)若∠DAB=60°,AB=6,求△ACD的面积.
.先化简分式,再从不等式组的解集中取一个合适的值代入,求原分式的值.
(本大题满分8分,每小题4分)(1)计算: (2)解方程:
(本题10分)在校际运动会上,身高1.8米的李梦晨(AB)同学,把铅球抛到离脚底(B)9米远的P点,李梦晨同学所抛的铅球在到达最大高度时,距其脚底(B)4米,聪明的你,请你参照图示,帮助李梦晨同学求出此铅球运动的轨迹方程.
.(本题8分)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD.(1)根据你的判断:BD是⊙O的切线吗?为什么?.(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为10,cos∠BFA=,那么,你能求出△ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.