(本小题满分12分)已知抛物线()的焦点为椭圆的右焦点,点、为抛物线上的两点,是抛物线的顶点,⊥.(Ⅰ)求抛物线的标准方程;(Ⅱ)求证:直线过定点;(Ⅲ)设弦的中点为,求点到直线的距离的最小值.
在△中,已知a、b、c分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,试判断△ABC的形状并求角的大小.
在平面直角坐标系上,设不等式组()所表示的平面区域为,记内的整点(即横坐标和纵坐标均为整数的点)的个数为.(Ⅰ)求并猜想的表达式再用数学归纳法加以证明;(Ⅱ)设数列的前项和为,数列的前项和,是否存在自然数m?使得对一切,恒成立。若存在,求出m的值,若不存在,请说明理由。
设圆过点P(0,2), 且在轴上截得的弦RG的长为4.(1)求圆心的轨迹E的方程; (2)过点(0,1),作轨迹的两条互相垂直的弦、,设、 的中点分别为、,试判断直线是否过定点?并说明理由.
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.(I)求证BCSC;(II)求面ASD与面BSC所成二面角的大小;(III)设棱SA的中点为M,求异面直线DM与SB所成角的大小.
已知函数图像上一点处的切线方程为,其中为常数.(Ⅰ)函数是否存在单调减区间?若存在,则求出单调减区间(用表示);(Ⅱ)若不是函数的极值点,求证:函数的图像关于点对称.