设圆过点P(0,2), 且在轴上截得的弦RG的长为4.(1)求圆心的轨迹E的方程; (2)过点(0,1),作轨迹的两条互相垂直的弦、,设、 的中点分别为、,试判断直线是否过定点?并说明理由.
已知两条直线与的交点P,(1)求过点P且平行于直线的直线的方程;(2)若直线与直线垂直,求.
已知直线经过点(0,-2),其倾斜角是60°.(1)求直线的方程;(2)求直线与两坐标轴围成三角形的面积
已知椭圆的两个焦点分别为,离心率.(1)求椭圆的方程.(2)一条不与坐标轴平行的直线与椭圆交于不同的两点,且线段的中点的横坐标为,求直线的斜率的取值范围.
已知p :A={x∣2a≤x≤a2+1},q: B={x∣x2-3(a +1)x+2(3a+1) ≤ 0}。若p是q的充分条件,求实数a的取值范围
等差数列的各项均为正数,,前项和为,为等比数列, ,且 .(1)求与; (2)求和:.