本题有⑴、⑵、⑶三个选考题,每题7分,请考生任选两题作答,满分14分,如果多做,则按所做的前两题计分.(1)(本小题满分7分)选修4—2:矩阵与变换已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M。(2)(本小题满分7分)选修4—4:坐标系与参数方程过点M(3,4),倾斜角为的直线与圆C:(为参数)相交于A、B两点,试确定的值。(3)(本小题满分7分)选修4—5:不等式选讲已知实数满足,,试确定的最大值。
(本题12分)高一某班的一次数学测试成绩的茎叶图和频率分布图都受到不同程度的破坏,但可见部分如下,据此解答如下问题: (1)求分数在[50,60)的频率及全班人数; (2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高; (3)利用频率分布直方图估计本次测试成绩的中位数。
(本题12分)已知函数,当x = -1时取得极大值7,当x = 3时 取得极小值;(1)求的值;(2)求的极小值。
(本题10分)已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点A,B. (1)求椭圆的方程; (2)求的取值范围。
(本小题满分14分) 设函数. (1)试问函数能否在时取得极值?说明理由; (2)若a=-1,当时,函数与的图像有两个公共点,求c的取值范围.
.(本小题满分12分) 某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米. (1)分别写出用x表示y和S的函数关系式(写出函数定义域) (2)怎样设计能使s取得最大值,最大值为多少?