已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且 (I)求椭圆C1的方程; (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
已知,函数(1)求方程g(x)=0的解集;(2)求函数f(x)的最小正周期及其单调增区
已知函数(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;(2)判断函数f(x)的单调性;(3)求证:
已知中心在原点的双曲线C的一个焦点是F1(一3,0),一条渐近线的方程是(1)求双曲线C的方程;(2)若以k(k≠0)为斜率的直线与双曲线C相交于两个不同的点M, N,且线段MN的垂直平分线与两坐标轴围成的三角形的面积为,求k的取值范围。
某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x(百台),其总成本为g(x)万元(总成本=固定成本+生产成本),并且销售收人r(x)满足假定该产品产销平衡,根据上述统计规律求:(1)要使工厂有盈利,产品数量x应控制在什么范围?(2)工厂生产多少台产品时盈利最大?
为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,收费1元;③租用时间为2小时以上且不超过3小时,收费2元;④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算)已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.(1)求甲、乙两人所付租车费相同的概率;(2)设甲、乙两人所付租车费之和为随机变量,求的分布列和数学期望E.