如图8,在Rt△ABC中,∠ACB=90°, ∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. 解答下列问题:(1) ① 当α=________度时,四边形EDBC是直角梯形;② 当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;(2) 当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
解不等式2(x-2)<1-3x,并把它的解集在数轴上表示出来.
如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,设点D的横坐标为a. (1)如图1,若m=. ①当OC=2时,求抛物线C2的解析式; ②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由; (2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).
如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒. (1)点F在边BC上. ①如图1,连接DE,AF,若DE⊥AF,求t的值; ②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似? (2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.
某水果店销售某中水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2﹣8mx+n,其变化趋势如图2. (1)求y2的解析式; (2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?
如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且=. (1)求证:CD是⊙O的切线; (2)若tan∠CAB=,BC=3,求DE的长.