如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上的一点,(1)求证:△ACE≌△BCD;(2)若DE=13,BD=12,求线段AB的长.
商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?
如图,P是正方形ABCD内一点,连接PA、PB、PC,将△ABP绕点B顺时针旋转到△CBP′的位置.(1)旋转中心是点 ,点P旋转的度数是 度;(2)连结PP′,求证:△BPP′是等腰直角三角形;(3)若PA=2,PB=4,∠APB=135°.①求△BPP′的周长;②求PC的长.
重庆市移动公司2011年底手机用户量为100万部,预计2013年底手机用户量将达到144万部 .(1)求2011年底至2013年底该公司手机用户量的年平均增长率;(2)由于该公司的手机不断创新和开拓市场,预计到2015年底手机用户量将达到207.96万部.根据市场调查,从2013年底开始,手机用户每年减少的数量是上年底总数的5%.问从2014年初起,该公司每年新增手机的用户量是多少万部?(假定每年新增手机用户的数量相同)
先化简,再求值:,其中是方程的根.
如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(4,-1).(1)画出△ABC以y轴为对称轴的对称图形△A1B1C1,并写出点C1的坐标;(2)以原点O为对称中心,画出△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)以A2为旋转中心,把△A2B2C2顺时针旋转90°,得到△A2B3C3,并写出点C3的坐标.