(本小题满分14分) 如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动.(1)当时,求椭圆的方程,(2)当的边长恰好是三个连续的自然数时,求面积的最大值.
(本小题满分15分) 已知函数,。 (Ⅰ)求在区间的最小值; (Ⅱ)求证:若,则不等式≥对于任意的恒成立; (Ⅲ)求证:若,则不等式≥对于任意的恒成立。
(本小题满分15分) 如图,椭圆方程为,为椭圆上的动点,为椭圆的两焦点,当点不在轴上时,过作的外角平分线的垂线,垂足为,当点在轴上时,定义与重合。 (Ⅰ)求点的轨迹的方程; (Ⅱ)已知、,试探究是否存在这样的点:点是轨迹内部的整点(平面内横、纵坐标均为整数的点称为整点),且的面积?若存在,求出点的坐标,若不存在,说明理由。
如图,正方形所在平面与圆所在平面相交于,线段为圆的弦,垂直于圆所在平面,垂足是圆上异于、的点,,圆的直径为9 (Ⅰ)求证:平面平面; (Ⅱ)求二面角的平面角的正切值。
.(本小题满分14分) 已知数列的首项,,其中。 (Ⅰ)求证:数列为等比数列; (Ⅱ)记,若,求最大的正整数。
已知向量,设函数。 (Ⅰ)求的最小正周期与单调递减区间; (Ⅱ)在中,、、分别是角、、的对边,若的面积为,求的值。