(本小题满分14分)已知椭圆方程为(),抛物线方程为.过抛物线的焦点作轴的垂线,与抛物线在第一象限的交点为,抛物线在点处的切线经过椭圆的右焦点. (1)求满足条件的椭圆方程和抛物线方程; (2)设为椭圆上的动点,由向轴作垂线,垂足为,且直线上一点满足,求点的轨迹方程,并说明轨迹是什么曲线?
设的极小值为,其导函数的图像经过点,如图所示, (1)求的解析式; (2)若对都有恒成立, 求实数的取值范围。
如图,正三棱柱的底面边长为,侧棱长为,点在棱上. (1)若,求证:直线平面; (2)是否存在点,使平面⊥平面,若存在,请确定点的位置,若不存在,请说明理由; (3)请指出点的位置,使二面角平面角的大小为.
箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为的卡片反面标的数字是(卡片正反面用颜色区分). (1)如果任意取出一张卡片,试求正面数字大于反面数字的概率; (2)如果同时取出两张卡片,试求他们反面数字相同的概率.
内接于以O为圆心,1为半径的圆,且. (1)求数量积,,; (2)求的面积.
已知函数f(x)=(x2+)(x+a)(aR).(1)若函数f(x)的图象上有与x轴平行的切线,求a的范围;(2)若(-1)=0,(I)求函数f(x)的单调区间;(II)证明对任意的x1、x2(-1,0),不等式|f(x1)-f(x2)|<恒成立.