如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。(Ⅰ)求证:BH//平面A1EFD1;(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。
在中,,,. (1)求边的长度; (2)若点是的中点,求中线的长度.
已知命题:函数的值域为R;命题:函数是R上的减函数.若或为真命题,且为假命题,求实数a的取值范围。
(本小题满分12分) 已知焦点在轴上的椭圆C1:=1经过A(1,0)点,且离心率为. (I)求椭圆C1的方程; (Ⅱ)过抛物线C2:(h∈R)上P点的切线与椭圆C1交于两点M、N,记线段MN与PA的中点分别为G、H,当GH与轴平行时,求h的最小值.
(本小题满分12分) 已知函数 (I)设=-1,求函数的极值; (II)在(I)的条件下,若函数(其中为的导 数)在区间(1,3)上不是单调函数,求实数的取值范围.
(本小题满分12分) 如图,在三棱柱ABC—A1B1C1中,AA1⊥平面A1B1C1,∠B1A1C1=90°,D、E分别为CC1和A1B1的中点,且A1A=AC=2AB=2. (I)求证:C1E∥平面A1BD; (Ⅱ)求点C1到平面A1BD的距离.