每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆): 按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.(Ⅰ)求z的值.(Ⅱ)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
在数列{an}中,a1=2,a4=8,且满足an+2=2an+1-an(n∈N*)(1)求数列{an}的通项公式(2)设bn=2n-1·an,求数列{bn}的前n项和sn
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其他三面围墙需新建,在旧墙对面的新墙上要留一个宽度为2m的进出口如图所示。已知旧墙的维修费用为45元/m,新墙的造价为180元/m。设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元)(1)将y表示为x的函数(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
数列{an}的前n项和记为Sn,(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
(1)求数列的通项公式(2)求数列的前n项和
(本小题满分14分)已知数列,满足,其中.(Ⅰ)若,求数列的通项公式;(Ⅱ)若,且.(ⅰ)记,求证:数列为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项应满足的条件.