(本小题满分12分)已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)。(Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)> ;(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。
(本题14分).在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点,交于点. (1)求直线与平面所成的角的正弦值; (2)求点到平面的距离.
.(本题14分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5) ⑴求以向量为一组邻边的平行四边形的面积S; ⑵若向量分别与向量垂直,且=,求向量的坐标。
(本题14分)已知不等式的解集为, (1)求实数的值; (2)解关于的不等式(为实常数)
(本题12分) 若椭圆与双曲线有相同的焦点,且椭圆与双曲线交于点,求椭圆及双曲线的方程.
(本题12分)已知命题;命题表示焦点轴上的椭圆,若,求实数的取值范围.