(本小题满分12分)已知A、B、C是直线l上的三点,O是直线l外一点,向量满足=[f(x)+2f′(1)]-ln(x+1)。(Ⅰ)求函数y=f(x)的表达式; (Ⅱ)若x>0,证明:f(x)> ;(Ⅲ)若不等式x2≤f(x2)+m2-2m-3对x∈[-1,1]恒成立,求实数m的取值范围。
设椭圆:的左、右焦点分别为、,上顶点为,在轴负半轴上有一点,满足,且⊥.(Ⅰ)求椭圆的离心率;(Ⅱ)若过、、三点的圆恰好与直线相切,求椭圆的方程; (Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,若点使得以为邻边的平行四边形是菱形,求的取值范围.
已知正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角,如图.(I)证明:∥平面;(II)求二面角的余弦值;(Ⅲ)在线段上是否存在一点,使?证明你的结论.
已知函数,.(I)若函数在处取得极值,求的单调区间;(II)当时,恒成立,求的取值范围.
已知.(Ⅰ)若向量,,且∥,求的值;(Ⅱ)在中,角的对边分别是,且满足,求的取值范围.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为,,.经过第二次烧制后,甲、乙、丙三件产品的合格率均为.(Ⅰ)求第一次烧制后恰有一件产品合格的概率;(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.