设椭圆:的左、右焦点分别为、,上顶点为,在轴负半轴上有一点,满足,且⊥.(Ⅰ)求椭圆的离心率;(Ⅱ)若过、、三点的圆恰好与直线相切,求椭圆的方程; (Ⅲ)在(Ⅱ)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,若点使得以为邻边的平行四边形是菱形,求的取值范围.
(本小题满分14分) 在平面直角坐标系中,已知圆和圆. (1)若直线过点,且被圆截得的弦长为,求直线的方程; (2)在平面内是否存在一点,使得过点有无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长的倍与直线被圆截得的弦长相等?若存在,求出所有满足条件的点的坐标;若不存在,请说明理由.
(本小题满分14分) 如图,已知,. (1)试用向量来表示向量; (2)若向量,的终点在一条直线上, 求实数的值; (3)设,当、、、四点共圆时, 求的值.
(本小题满分13分) 从某校高一年级参加期末考试的学生中抽出名学生,其数学成绩(均为整数)的频率分布直方图如图所示. (1)根据频率分布直方图估计这次考试该年级的数学平均分; (2) 已知在[90,100]内的学生的数学成绩都不相同,且都在95分以上(不含95分),现用简单随机抽样方法,从这个数中任取个数,求这个数恰好是两名学生的数学成绩的概率.
(本小题满分13分) 已知向量满足,其中. (1)求和的值; (2)若,求的值.
(本小题满分13分) 已知函数. (1)求的单调递增区间; (2)函数的图象经过怎样的平移可使其对应的函数成为偶函数? 请写出一种正确的平移方法,并说明理由.