(本小题12分)正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B.(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;(Ⅱ)求直线BC与平面DEF所成角的余弦值;(Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
(本小题满分10分)选修4-1,几何证明选讲 如图,四边形是的内接四边形,的延长线与的延长线交于点, 且.(1)证明:; (2)设不是的直径,的中点为,且,证明:为等边三角形.
(本小题满分12分)已知焦点在轴,顶点在原点的抛物线经过点,以抛物线上 一点为圆心的圆过定点(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.
(本小题共12分)已知函数,其中是常数. (1)当时,求曲线在点处的切线方程; (2)若在定义域内是单调递增函数,求的取值范围.
(本小题满分12分) 设数列的前项和为,点在直线上. (1)求数列的通项公式; (2)在与之间插入个数,使这个数组成公差为的等差数列,求数列的前项和.
(本小题满分12分)如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求三棱锥的体积.