(本小题14分)已知,函数,(Ⅰ)当=2时,写出函数的单调递增区间;(Ⅱ)当>2时,求函数在区间上的最小值;(Ⅲ)设,函数在上既有最大值又有最小值,请分别求出的取值范围(用表示)
(本小题满分10分)已知函数是偶函数.(1)求实数的值;(2)设,若有且只有一个实数解,求实数的取值范围.
如图, 已知底角为的等腰梯形, 底边长为, 腰长为, 当一条垂直于底边的直线从左至右移动(与梯形有公共点)时, 直线把梯形分成两部分, 令, 试写出左边部分的面积与的函数解析式, 并画出大致图象.
(本小题满分8分)已知函数在其定义域时单调递增, 且对任意的都有成立,且,(1)求的值;(2)解不等式:.
(本小题满分8分)已知函数 (1)求实数的取值范围,使函数在区间上是单调函数;(2)若, 记的最大值为, 求的表达式并判断其奇偶性.
(本小题满分8分)(1)解含的不等式: ;(2)求函数的值域, 并写出其单调区间.