(本小题满分12分)求曲线与围成的封闭图形的面积.
已知向量. (1)当时,求的值; (2)设函数,已知在△ABC中,内角A、B、C的对边分别为,若,求()的取值范围。
(本小题满分14分)已知函数f()=-a+ (a-1),. (I)讨论函数的单调性; (II)若,数列满足. (1)若首项,证明数列为递增数列; (2)若首项为正整数,数列递增,求首项的最小值.
设椭圆 C1:()的一个顶点与抛物线 C2:的焦点重合,F1,F2 分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 F2 的直线 与椭圆 C 交于 M,N 两点. (I)求椭圆C的方程; (II)是否存在直线 ,使得 ,若存在,求出直线 的方程;若不存在,说明理由; (III)若 AB 是椭圆 C 经过原点 O 的弦,MN//AB,求证:为定值.
(本小题满分12分)已知数列满足, ,. (1)求证:是等比数列; (2)求证:设,且对于恒成立, 求的取值范围.
(本小题共12分)如图,三棱柱中,侧面底面,,且,O为中点. (Ⅰ)证明:平面; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.