(本小题满分12分)求曲线与围成的封闭图形的面积.
如图,四棱锥中,底面是菱形,,,是的中点,点在侧棱上. (1)求证:⊥平面; (2)若是的中点,求证://平面; (3)若,试求的值.
在中,角、、的对边分别为、、.设向量,. (1)若,,求角;(2)若,,求的值.
已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点. (1)证明和均为定值; (2)设线段的中点为,求的最大值; (3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.
已知图像过点,且在处的切线方程是. (1)求的解析式; (2)求在区间上的最大值和最小值.
已知椭圆的离心率为,直线与圆相切. (1)求椭圆的方程; (2)设直线与椭圆的交点为,求弦长.