(本小题满分12分)已知AD是Rt斜边BC的中线,用解析法证明.
(本小题满分12分)已知函数的最小正周期为,且. (1)求的表达式; (2)设,,,求的值.
(本小题满分14分)已知,函数=. (1)记在区间上的最大值为,求的表达式; (2)是否存在,使函数在区间内的图象上存在两点,在该两点处的切线互相垂直?若存在,求的取值范围;若不存在,请说明理由.
(本小题满分14分)在直角坐标系中,曲线上的点均在圆外,且对上任意一点,到直线的距离等于该点与圆上点的距离的最小值. (1)求曲线的方程; (2)设为圆外一点,过作圆的两条切线,分别与曲线相交于点和.证明:当在直线上运动时,四点的纵坐标之积为定值.
(本小题满分14分)已知数列的前项和为,,. (1)求数列的通项公式; (2)设数列的前项和为,=+++ +.试比较与的大小.
(本小题满分14分)如图,在四棱锥中,底面为直角梯形,,,平面⊥底面,为的中点,是棱上的点,,,. (1)求证:平面⊥平面; (2)若二面角为,设,试确定 的值.