求由曲线y =" x2" 与 y =" 2-" x2 围成的平面图形的面积
如图,在三棱锥中,底面,点,分别在棱的中点,求与平面所成的角的正弦值的大小;
已知的展开式中第五项的系数与第三项的系数的比是10∶1.求展开式中含的项.
已知P是椭圆上的任意一点,F1、F2是它的两个焦点,O为坐标原点,=+,求动点Q的轨迹方程.
已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(1)求椭圆的方程;(2)设,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.
已知关于x的绝对值方程|x2+ax+b|=2,其中a,b∈R.(1)当a,b满足什么条件时,方程的解集M中恰有3个元素?(2)在条件(1)下,试求以方程解集M中的元素为边长的三角形,恰好为直角三角形的充要条件.