已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点 任作一条与轴不垂直的直线,它与曲线交于、两点。(1)求曲线的方程;(2)试证明:在轴上存在定点,使得总能被轴平分。
一炮弹在A处的东偏北60°的某处爆炸,在A处测到爆炸信号的时间比在B处早4秒,已知A在B的正东方、相距6千米, P为爆炸地点,(该信号的传播速度为每秒1千米)求A、P两地的距离.
已知动圆M与直线y =2相切,且与定圆C:外切,求动圆圆心M的轨迹方程
动直线y =a,与抛物线相交于A点,动点B的坐标是,求线段AB中点M的轨迹的方程
河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,. (Ⅰ)求的取值范围; (Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值.