(本小题满分16分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数p与听课时间t(单位:分钟)之间的关系满足如图所示的曲线.当时,曲线是二次函数图象的一部分,当时,曲线是函数(,)图象的一部分.根据专家研究,当注意力指数p大于80时学习效果最佳. (1)试求的函数关系式;(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.
甲居住在城镇的处,准备开车到单位处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如:算作两个路段:路段发生堵车事件的概率为,路段发生堵车事件的概率为). (1)请你为甲选择一条由到的最短路线 (即此人只选择从西向东和从南向北的路线), 使得途中发生堵车事件的概率最小; (2)设甲在路线中遇到的堵车次数为随机变量,求的数学期望.
如图示,边长为2的正方形ABCD与正三角形ADP所在平面互相垂直,M是PC的中点。 (1)求证:∥平面; (2)求二面角的余弦值。
已知某市2011年新建住房400万平方米,其中有250万平方米是中低价房。预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%,且每年新建住房中,中低价房的面积均比上一年增加50万平方米。 (1) 到哪一年底,该市历年所建中低价房的累计面积(以2011年为累计的第一年)将首次不少于4750万平方米? (2) 到哪一年底,该年建造的中低价房的面积占该年建造住房面积的比例首次大于85%? (参考数据:)
在ABC中,a、b、c分别是角 A、B、C所对的边,设,且,。 (1)判断ABC的形状; (2)的取值范围。
已知函数,,. (1)若函数在区间上不是单调函数,试求的取值范围; (2)直接写出(不需要给出演算步骤)函数的单调递增区间; (3)如果存在,使函数,在处取得最小值,试求的最大值.