(本小题满分16分)某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数p与听课时间t(单位:分钟)之间的关系满足如图所示的曲线.当时,曲线是二次函数图象的一部分,当时,曲线是函数(,)图象的一部分.根据专家研究,当注意力指数p大于80时学习效果最佳. (1)试求的函数关系式;(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.
(本小题满分14分)椭圆E的中心在原点O,焦点在x轴上,离心率,过点C(-1,0)的直线l交椭圆于A、B两点,且满足:(λ≥2)。 (1)若λ为常数,试用直线l的斜率k(k≠0)表示三角形OAB的面积; (2)若λ为常数,当三角形OAB的面积取得最大值时,求椭圆E的方程; (3)若λ变化,且λ=k2+1,试问:实数λ和直线l的斜率k(k∈R)分别为何值时,椭圆E的短半轴长取得最大值?并求出此时的椭圆方程。
关于x的方程2x2-tx-2=0的两根为函数f(x)= (1)求f(的值。 (2)证明:f(x)在[上是增函数。 (3)对任意正数x1.x2,求证:
(本小题满分14分)如图:直平行六面体ABCD-A1B1C1D1,底面ABCD是边长为2a的菱形,∠BAD=600,E为AB中点,二面角A1-ED-A为600 (I)求证:平面A1ED⊥平面ABB1A1; (II)求二面角A1-ED-C1的余弦值; (III)求点C1到平面A1ED的距离。
(本小题满分12分) (I)求向量; (II)若映射 ①求映射f下(1,2)原象; ②若将(x、y)作点的坐标,问是否存在直线l使得直线l上任一点在映射f的作用下,仍在直线上,若存在求出l的方程,若不存在说明理由
(本小题满分14分)数列 (1)若数列 (2)求数列的通项公式 (3)数列适合条件的项;若不存在,请说明理由