在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1.(1)设平面ABE与平面ACD的交线为直线,求证:∥平面BCDE;(2)设F是BC的中点,求证:平面AFD⊥平面AFE;(3)求几何体ABCDE的体积.
已知各项均为正数的数列满足≤. (1)若,时,求的通项公式; (2)若,A=1,证明:
已知圆为ΔABC的内切园,且BC中点为(1,-1),BC∥x轴。⑴求ΔABC顶点A的轨迹方程。⑵求|BC|的范围。⑶试问ΔABC的面积是否存在最小值?请证明你的判断。
数列满足,.(1)求通项公式;(2)令,数列前项和为,求证:当时,;(3)证明:.
设数列{a}的首项a=1,前n项和S满足关系式:3tS-(2t+3)S=3t(t>0,n=2,3,4…).(1)求证:数列{a}是等比数列;(2)设数列{a}的公比为f(t),若数列{b}满足:b=1,b=f()(n=2,3,4…),求;(3) 对于(2)中的数列{b},求bb-bb+bb-…+(-1) bb的和。
已知函数 (1)求函数在区间[1,]上的最大值、最小值;(2)求证:在区间(1,)上,函数图象在函数图象的下方;(3)设函数,求证:≥。()