(本小题满分12分)已知方向向量为的右焦点,且椭圆的离心率为.(1)求椭圆C的方程;(2)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且,求实数的取值范围.
已知二次函数对任意,都有成立,设向量(sinx,2),(2sinx,),(cos2x,1),(1,2),当[0,]时,求不等式f()>f()的解集.
.(本题满分14分)已知函数f(x)=sin(ωx+φ),其中ω>0,|φ|<. (1)若coscosφ-sinsinφ=0,求φ的值; (2)在(1)的条件下,若函数f(x)的图象的相邻两条对称轴之间的距离等于,求函数f(x)的解析式;并求最小正实数m,使得函数f(x)的图象向左平移m个单位后所对应的函数是偶函数.
(本题满分12分)设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x+m). (1)求函数f(x)的最小正周期和在[0,π]上的单调递增区间. (2)当x∈时,-4<f(x)<4恒成立,求实数m的取值范围.
(本小题满分12分)设, (1)求f(x)+f(60°-x)(2)求f(1°)+f(2°)+…+f(59°)的值
.(本题满分12分)若关于x的方程x2+2ax+2-a=0有两个不相等的实根,求分别满足下列条件的a的取值范围. (1)方程两根都小于1; (2)方程一根大于2,另一根小于2.