(本小题满分12分)已知方向向量为的右焦点,且椭圆的离心率为.(1)求椭圆C的方程;(2)若已知点D(3,0),点M,N是椭圆C上不重合的两点,且,求实数的取值范围.
如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点. (Ⅰ) 求证:平面; (Ⅱ) 求证:平面.
直线经过椭圆的右焦点,与椭圆交于、两点,且,求直线的方程.
在平面直角坐标系中, 曲线与坐标轴的交点都在圆C上. (Ⅰ)求圆C的方程; (Ⅱ)若圆C与直线交于A,B两点,且求的值.
直线过点,且与轴,轴分别交于两点. (Ⅰ)若点恰为线段的中点,求直线的方程; (Ⅱ)若,求直线的方程.
如图,已知抛物线的焦点为F过点的直线交抛物线于A,B两点,直线AF,BF分别与抛物线交于点M,N . (Ⅰ)求的值; (Ⅱ)记直线MN的斜率为,直线AB的斜率为证明:为定值