围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其他三面围墙需新建,在旧墙对面的新墙上要留一个宽度为2m的进出口如图所示。已知旧墙的维修费用为45元/m,新墙的造价为180元/m。设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元)(1)将y表示为x的函数(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
求函数在区间上的最值.
设函数(1)当时,求的最大值;(2)令,(),其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求c的取值范围
设有极值,(Ⅰ)求的取值范围;(Ⅱ)求极大值点和极小值点.
已知的图象经过点,且在处的切线方程是(1)求的解析式;(2)求的单调递增区间