如图,AB为⊙的直径,AD与⊙相切于点A,DE与⊙相切于点E,点C为DE延长线上一点,且(1)求证:BC为⊙的切线;(2)若,,求线段BC的长
如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( − 4 , 4 ) , B ( − 2 , 5 ) , C ( − 2 , 1 ) .
(1)平移 ΔABC ,使点 C 移到点 C 1 ( − 2 , − 4 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 , B 1 的坐标;
(2)将 ΔABC 绕点 ( 0 , 3 ) 旋转 180 ° ,得到△ A 2 B 2 C 2 ,画出旋转后的△ A 2 B 2 C 2 ;
(3)求(2)中的点 C 旋转到点 C 2 时,点 C 经过的路径长(结果保留 π ) .
如图, ΔABC 中, AB = BC , BD ⊥ AC 于点 D , ∠ FAC = 1 2 ∠ ABC ,且 ∠ FAC 在 AC 下方.点 P , Q 分别是射线 BD ,射线 AF 上的动点,且点 P 不与点 B 重合,点 Q 不与点 A 重合,连接 CQ ,过点 P 作 PE ⊥ CQ 于点 E ,连接 DE .
(1)若 ∠ ABC = 60 ° , BP = AQ .
①如图1,当点 P 在线段 BD 上运动时,请直接写出线段 DE 和线段 AQ 的数量关系和位置关系;
②如图2,当点 P 运动到线段 BD 的延长线上时,试判断①中的结论是否成立,并说明理由;
(2)若 ∠ ABC = 2 α ≠ 60 ° ,请直接写出当线段 BP 和线段 AQ 满足什么数量关系时,能使(1)中①的结论仍然成立(用含 α 的三角函数表示).
俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于 30 % .试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为 y 本,销售单价为 x 元.
(1)请直接写出 y 与 x 之间的函数关系式和自变量 x 的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润 w 元最大?最大利润是多少元?
如图, Rt Δ ABC 中, ∠ ABC = 90 ° ,以 AB 为直径作 ⊙ O ,点 D 为 ⊙ O 上一点,且 CD = CB ,连接 DO 并延长交 CB 的延长线于点 E .
(1)判断直线 CD 与 ⊙ O 的位置关系,并说明理由;
(2)若 BE = 4 , DE = 8 ,求 AC 的长.
为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 3 2 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?