已知为偶函数,曲线过点,.(Ⅰ)若当时函数取得极值,确定的单调区间(Ⅱ)若曲线有斜率为0的切线,求实数的取值范围;
(本小题12分)已知。求的值。
(本小题满分14分)(注意:在试题卷上作答无效)设数列的前项和为,对一切,点都在函数 的图象上. (Ⅰ)求及数列的通项公式;(Ⅱ) 将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值;(Ⅲ)令(),求证:
(本小题满分13分)(注意:在试题卷上作答无效)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率; (ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,, 求证:为定值.
(本小题满分12分)(注意:在试题卷上作答无效)为赢得2010年上海世博会的制高点,某公司最近进行了世博特许产品的市场分析,调查显示,该产品每件成本9元,售价为30元,每天能卖出432件,该公司可以根据情况可变化价格()元出售产品;若降低价格,则销售量增加,且每天多卖出的产品件数与商品单价的降低值的平方成正比,已知商品单价降低2元时,每天多卖出24件;若提高价格,则销售减少,减少的件数与提高价格成正比,每提价1元则每天少卖8件,且仅在提价销售时每件产品被世博管委会加收1元的管理费。(Ⅰ)试将每天的销售利润表示为价格变化值的函数;(Ⅱ)试问如何定价才能使产品销售利润最大?
(本小题满分12分)(注意:在试题卷上作答无效)如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,为DB的中点,(Ⅰ)证明:AE⊥BC; (Ⅱ)若点是线段上的动点,设平面与平面所成的平面角大小为,当在内取值时,求直线PF与平面DBC所成的角的范围。