本小题满分12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)证明:MC⊥BD.
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,截面DAN交PC于M.(1)求PB与平面ABCD所成角的大小;(2)求证:PB⊥平面ADMN.
在正方体中,G是C1D1的中点,H是A1B1的中点(1)求异面直线AH与BC1所成角的余弦值;(2)求证:BC1∥平面B1DG.
已知中的三个内角所对的边分别为,且满足,.(Ⅰ)求的值;(Ⅱ)求的面积.
(本小题满分12分)在一次商贸交易会上,一商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有5个红球和3个白球的袋中有放回地取出2个球,当两个球同色时则中奖,求中奖概率;(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.
(本小题满分12分).已知函数.(Ⅰ)求的周期和振幅;(Ⅱ)在给出的方格纸上用五点作图法作出在一个周期内的图象.(Ⅲ)写出函数的递增区间.