(本题12分)已知等差数列满足:的前项和;(1)求;(2)令,求数列的前项和.
如图,已知直二面角 α - P Q - β , A ∈ P Q , B ∈ α , C ∈ β , C A = C B , ∠ B A P = 45 ° , C A 和平面 α 所成的角为 30 ° . (I)证明 B C ⊥ P Q ; (II)求二面角 B - A C - P 的大小.
某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有 60 % ,参加过计算机培训的有 75 % ,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (I)任选1名下岗人员,求该人参加过培训的概率; (II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率.
已知函数 f ( x ) = 1 - 2 sin 2 ( x + π 8 ) + 2 sin ( x + π 8 ) cos ( x + π 8 ) .求: (I)函数 f ( x ) 的最小正周期; (II)函数 f ( x ) 的单调增区间.
(本题14分)设定义在R上的函数,对任意有, 且当 时,恒有,若.(1)求;(2)求证: 时为单调递增函数. (3)解不等式.
为了预防好H1N1流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 .(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.