已知圆C满足:①截Y轴所得弦长为2,②被X轴分成两段弧,其弧长的比为3∶1,③圆心到直线:的距离为.(1)求圆C的方程;(2)过点的直线能否与圆C相切,若相切,求切线方程,若不相切,说明理由.
已知三个数成等差数列,其和为21,若第二个数减去1 ,第三个数加上1,则三个数成等比数列. 求原来的三个数.
在直角坐标平面内,已知向量, 点C(x,3)和D(-3,y)满足:∥且. 求y-x的值
设 . (1)当,设x1,x2是f(x)的两个极值点,且满足x1<1<x2<2,求证:; (2)当时,①求函数 (x>0)的最小值;②对于任意正实数a,b,c,当a+b+c=3时,求证:3aa+3bb+3cc≥9
已知椭圆的中心在原点,准线方程为x=±4,如果直线:3x-2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点. (1)求椭圆方程;(2)设直线与椭圆的一个交点为P,F是椭圆的一个焦点,试探究以PF为直径的圆与椭圆长轴为直径的圆的位置关系; (3)把(2)的情况作一推广:写出命题(不要求证明)
设集合W是满足下列两个条件的无穷数列{an}的集合:① ②,其中n∈N*,M是与n无关的常数 (1)若{an}是等差数列,Sn是其前n项的和,a3=4,S3=18,试探究{Sn}与集合W之间的关系; (2)设数列{bn}的通项为bn=5n-2n,且{bn}∈W,M的最小值为m,求m的值; (3)在(2)的条件下,设,求证:数列{Cn}中任意不同的三项都不能成为等比数列.