已知函数,.(1)求函数的最小正周期和单调增区间;(2)说明的图象可以由函数的图象经过怎样的变换得到.
(本小题满分12分)如图,已知点B在以AC为直径的圆上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.(I)证明:SC⊥EF;(II)若求三棱锥S—AEF的体积.
(本小题满分12分)已知函数,若,则称为的“不动点”;若,则称为的“稳定点”。记集合(1)已知,若是在上单调递增函数,是否有?若是,请证明。(2)记表示集合中元素的个数,问:若函数,若,则是否等于0?若是,请证明若,试问:是否一定等于1?若是,请证明
(本小题满分12分)设函数.(1)当 ≤≤时,用表示的最大值;(2)当时,求的值,并对此值求的最小值;(3)问取何值时,方程=在上有两解?
(本小题满分12分)已知函数(1)求它的定义域,值域和单调区间;(2)判断它的奇偶性和周期性。
(本小题满分12分)如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.