(本题满分13分)已知数列对都有(Ⅰ) 求的通项;(Ⅱ) 设数列的前n项和为, 求证:对, .
(本小题共12分) 双曲线与椭圆有共同的焦点,点是双曲线的渐近线与椭圆的一个交点,求椭圆与双曲线的标准方程。
(本小题共12分) .
(本小题共12分) 一个有穷等比数列的首项为,项数为偶数,如果其奇数项的和为,偶数项的和为,求此数列的公比和项数.
(本小题共12分) 如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.(1)求cos∠CBE的值;(2)求AE。
(本题满分15分)已知偶函数满足:当时,,当时,(1) 求当时,的表达式;(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。