如图,小芳和小丽想测量学校旗杆的高度,她们来到操场,小芳测得小丽身高1.6米,在阳光下的影子长度为2.4米,她想立刻测量旗杆的影长时,因旗杆靠近一教学楼,影子不全落在地面上,有一部分落在墙上,测得落在地面上影长为12米,留在墙上的影高为2米,求旗杆的高度.
阅读材料,解答问题. 例用图象法解一元二次不等式:.x2﹣2x﹣3>0 解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上. 又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3. ∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示. 观察函数图象可知:当x<﹣1或x>3时,y>0. ∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3. (1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是 ; (2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.
已知:二次函数y=﹣x2+2x+3 (1)求抛物线的对称轴和顶点的坐标; (2)画出函数图象; (3)根据图象: ①写出函数值y为正数时,自变量x的取值范围; ②写出当﹣2<x<2时,函数值y的取值范围.
二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程ax2+bx+c=0的两个根; (2)写出不等式ax2+bx+c>0的解集; (3)写出y随x的增大而减小的自变量x的取值范围; (4)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.
(1)请在坐标系中画出二次函数y=x2﹣2x的大致图象; (2)根据方程的根与函数图象的关系,将方程x2﹣2x=1的根在图上近似的表示出来(描点); (3)观察图象,直接写出方程x2﹣2x=1的根.(精确到0.1)
已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:对称. (1)求A、B两点坐标,并证明点A在直线l上; (2)求二次函数解析式; (3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.