(本题8分) 如图,点O在直线AB上,已知OC⊥OD,OC是∠AOE的平分线,且∠AOC=, (1)求∠COE的度数; (2)OD是∠BOE的平分线吗?为什么?
温州市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售。设天后每千克该野生菌的市场价格为元,试写出与之间的函数关系式;若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出与之间的函数关系式;李经理将这批野生菌存放多少天后出售可获得最大利润元?(利润=销售总额-收购成本-各种费用)
一座拱型桥,桥下水面宽度AB是20米,拱高CD是4米.若水面上升3米至EF,则水面宽度EF是多少?若把它看作是抛物线的一部分,在坐标系中(如图1)可设抛物线的表达式为.请你填空:a= ,c= ,EF= 米若把它看作是圆的一部分,则可构造图形(如图2)计算如下:设圆的半径是r米,在Rt△OCB中,易知,r=14.5同理,当水面上升3米至EF,在Rt△OGF中可计算出GF= 米,即水面宽度EF= 米.
一次远足,小明与小聪分别从A,B两个景点出发,沿同一条公路相向而行。他们出发的时间是上午8:00,小聪行走的速度是小明的, A,B两个景点之间的路程是9千米.设小明行走的速度为x千米/小时.经过t小时,在小明和小聪相遇前,他们相距多少千米?如果小聪行走的速度是4千米/小时,那么到几时几分,小明与小聪相距3千米?
某校的塑胶操场如右图所示,中间部分为长方形,两旁为两个半圆,长方形的长为米,宽为米,用含的代数式表示该操场的面积;当时,求该操场的面积
某检测小组乘汽车检修供电线路,约定向东方向出发为正,向西方向出发为负,某天检测小组自A地出发到收工时,行驶情况(单位:km)为:+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5 .收工时车辆停在何处?若每千米耗油0.2升,从A地出发到收工共耗油多少升?