(本小题共16分)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值(2)设直线与轴、轴分别交于点,,求证:为定值.
如图,四点在同一圆上,与的延长线交于点,点在的延长线上. (1)若,,求的值; (2)若,证明:.
(本小题满分12分)已知函数,. (1)若恒成立,求实数的值; (2)若方程有一根为,方程的根为,是否存在实数,使?若存在,求出所有满足条件的值;若不存在,说明理由.
(本小题满分12分)已知的两顶点坐标,,圆是的内切圆,在边,,上的切点分别为,(从圆外一点到圆的两条切线段长相等),动点的轨迹为曲线. (1)求曲线的方程; (2)设直线与曲线的另一交点为,当点在以线段为直径的圆上时,求直线的方程.
(本小题满分12分)在三棱柱中,侧面为矩形,,,为的中点,与交于点,侧面. (1)证明:; (2)若,求直线与平面所成角的正弦值.
(本小题满分12分)为迎接2014年“马”年的到来,某校举办猜奖活动,参与者需先后回答两道选择题,问题有三个选项,问题有四个选项,但都只有一个选项是正确的,正确回答问题可获奖金元,正确回答问题可获奖金元,活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答正确,则继续答题,否则该参与者猜奖活动终止,假设一个参与者在回答问题前,对这两个问题都很陌生. (1)如果参与者先回答问题,求其恰好获得奖金元的概率; (2)试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.