如图,在平面直角坐标系中,抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为.(1)求的值;(2)判断的形状,并说明理由;(3)在线段上是否存在点,使与相似.若存在,求出点的坐标;若不存在,说明理由
解方程:.
如图,利用一面长度为7米的墙,用20米长的篱笆能否围出一个面积为48平方米的矩形菜园?若能,求出该菜园与墙平行一边的长度;若不能,说明理由.
已知O是平面直角坐标系的原点,点A(1,n),B(-1,-n)(n>0),AB的长是,若点C在轴上,且OC=AC,求点C的坐标.
判断关于的方程的根的情况.
(1)第一盒乒乓球中有2个白球1个黄球,第二盒子乒乓球中有1个白球1个黄球,分别从每个盒中随机地取出1个球,求这两个球中欧一个是白球一个是黄球的概率;解方程:;(3)如图,在⊙O中,=,∠A=30°,求∠B的度数