请考生在22、23两题中任选一题作答,如果都做,则按所做的第一题记分。(本小题满分10分)选修4-1:几何证明选讲如图,AB是⊙O的直径,C、F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M。(I)求证:DC是⊙O的切线; (II)求证:AM:MB=DF·DA。
已知数列满足 (I)证明:数列是等比数列;(II)求数列的通项公式; (II)若数列满足证明是等差数
已知正项数列,其前项和满足且成等比数列,求数列的通项
设数列满足为实数 (Ⅰ)证明:对任意成立的充分必要条件是; (Ⅱ)设,证明:; (Ⅲ)设,证明:
已知定义在R上的函数和数列满足下列条件:,,其中a为常数,k为非零常数. (Ⅰ)令,证明数列是等比数列; (Ⅱ)求数列的通项公式; (III)当时,求.
数列{an}的前n项和为Sn,且a1=1,,n=1,2,3,……,求 (I)a2,a3,a4的值及数列{an}的通项公式; (II)的值.