(本小题满分10分)选修4-1:几何证明选讲如图,AB是⊙O的直径,C、F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M。(I)求证:DC是⊙O的切线;(II)求证:AM:MB=DF·DA。
已知二次函数. (Ⅰ)若且函数的值域为求函数的解析式; (Ⅱ)若且函数在上有两个零点,求的取值范围.
已知函数. (Ⅰ)若函数的图象在处的切线方程为求的值; (Ⅱ)若函数在上是增函数,求实数的最大值.
设命题:函数在上是增函数,命题:,如果是假命题,是真命题,求的取值范围.
已知集合,,. (Ⅰ)求集合; (Ⅱ)若,求实数的取值范围.
设,函数. (Ⅰ)求的单调递增区间; (Ⅱ)设问是否存在极值,若存在,请求出极值;若不存在,请说明理由; (Ⅲ)设是函数图象上任意不同的两点,线段的中点为直线的斜率为.证明:.