一动圆与圆外切,同时与圆内切.(1)求动圆圆心的轨迹的方程;(2)在矩形中(如图),分别是矩形四边的中点,分别是(其中是坐标系原点)的中点,直线的交点为,证明点在轨迹上.
在数列{an}中,a1=2,a4=8,且满足an+2=2an+1-an(n∈N*)(1)求数列{an}的通项公式(2)设bn=2n-1·an,求数列{bn}的前n项和sn
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其他三面围墙需新建,在旧墙对面的新墙上要留一个宽度为2m的进出口如图所示。已知旧墙的维修费用为45元/m,新墙的造价为180元/m。设利用旧墙的长度为x(单位:m),修建此矩形场地的总费用为y(单位:元)(1)将y表示为x的函数(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
数列{an}的前n项和记为Sn,(1)求{an}的通项公式;(2)等差数列{bn}的各项为正,其前n项和为Tn,且,又成等比数列,求Tn
(1)求数列的通项公式(2)求数列的前n项和
(本小题满分14分)已知数列,满足,其中.(Ⅰ)若,求数列的通项公式;(Ⅱ)若,且.(ⅰ)记,求证:数列为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次. 求首项应满足的条件.