(本小题满分14分)如图,四棱锥中,底面,,,,,是的中点.(1)求证:;(2)求证:面;(3)求二面角的平面角的正弦值.
已知圆C的圆心在坐标原点,且与直线相切(1)求直线被圆C所截得的弦AB的长.(2)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N求直线MN的方程(3)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,若∠POQ为钝角,求直线l纵截距的取值范围.
将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.(1)求满足条件a+b≥9的概率;(2)求直线ax+by+5=0与x2+y2=1相切的概率(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
已知向量(1)若,求的值;(2)设,若,求的值.
随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm)获得身高数据如下:
(1)完成数据的茎叶图(以百位十位为茎,以个位为叶),并求甲班样本数据的中位数、众数;(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
已知向量(1)证明: (2)若向量满足,且,求.