如图,正方体A1B1C1D1—ABCD中,E、F是对角线B1D1、 A1D的中点,(1)求证:EF∥平面D1C1CD;(2)求异面直线EF与B1C所成的角。
已知⊿ABC的顶点A(5,1),AB边上的中线CM所在的直线方程为2x-y-5=0,AC边上的高BH所在直线方程为,求:(1)顶点C的坐标;(2)直线BC的方程.
已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.
如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.
如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.
定义在上的函数满足,且.若是上的减函数,求实数的取值范围.