(12分)已知数列是各项均不为0的等差数列,为其前项和,且满足,令,数列的前n项和为.(Ⅰ)求数列的通项公式及数列的前n项和;(Ⅱ)是否存在正整数,使得成等比数列?若存在,求出所有的的值;若不存在,请说明理由.
已知函数在处的切线方程为.(1)求函数的解析式;(2)若关于的方程恰有两个不同的实根,求实数的值;(3)数列满足,,求的整数部分.
已知是定义在上的奇函数,当时,.(1)求;(2)求的解析式;(3)若,求区间.
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1) 判断函数是否为 “()型函数”,并说明理由;(2) 若函数是“()型函数”,求出满足条件的一组实数对;(3)已知函数是“型函数”,对应的实数对为,当时,,若当时,都有,试求的取值范围.
已知函数.(1)若在处取得极值,求的单调递增区间;(2)若在区间内有极大值和极小值,求实数的取值范围.
函数的定义域为,.(1)求集合;(2)若,求实数的取值范围.