(本题14分)如图:在二面角中,A、B,C、D,ABCD为矩形,且PA=AD,M、N依次是AB、PC的中点,(1)求二面角的大小(2)求证:(1) 求异面直线PA和MN所成角的大小
给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假. (1)矩形的对角线相等且互相平分; (2)正偶数不是质数.
若F1、F2分别为双曲线 -=1下、上焦点,O为坐标原点,P在双曲线的下支上,点M在上准线上,且满足:, (1)求此双曲线的离心率; (2)若此双曲线过N(,2),求此双曲线的方程 (3)若过N(,2)的双曲线的虚轴端点分别B1,B2(B2在x轴正半轴上),点A、B在双曲线上,且,求时,直线AB的方程.
如图,正四棱锥的高,底边长.求异面直线和之间的距离.
如图,正方形与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,, F、G分别是线段AE、BC的中点.求与所成的角的大小.