某厂生产某种零件,每只的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购, 决定每次订购超过100个时,每多订一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元(1)当一次订购多少个时,零件的实际出厂单价恰好降为51元?(2)设一次订购量为个,零件的实际出厂单价为P元,写出函数的表达式.
(本小题满分12分)如图,已知平面,平面,△为等边三角形,,为的中点. (1) 求证:平面; (2) 求证:平面平面; (3) 求直线和平面所成角的正弦值.
(本小题满分12分) 甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是,甲、乙、丙三人都能通过测试的概率是,甲、乙、丙三人都不能通过测试的概率是,且乙通过测试的概率比丙大. (Ⅰ)求乙、丙两人各自通过测试的概率分别是多少; (Ⅱ)求测试结束后通过的人数的数学期望.
(本小题满分12分) 已知函的部分图象如图所示: (1)求的值; (2)设,当时,求函数的值域.
不等式选讲 若函数的最小值为2,求自变量的取值范围
坐标系与参数方程。 以极点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位, 圆的方程为,圆的参数方程为(为参数),求两圆的公共弦的长度。