某商场预计全年分批购入每台价值为2 000元的电视机共3 600台.每批都购入x台(x∈N*),且每批均需付运费400元.贮存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比.若每批购入400台,则全年需用去运输和保管总费用43 600元.现在全年只有24 000元资金用于支付这笔费用,请问能否恰当安排每批进货的数量使资金够用?写出你的结论,并说明理由.
如图,已知三棱锥的侧棱、、两两垂直,且,,是的中点.(1)求点到面的距离;(2)求二面角的正弦值.
某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1.到各社区宣传慰问,倡导文明新风;2.到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
(1)分层抽样方法在做义工的志愿者中随机抽取名,年龄大于岁的应该抽取几名?(2)上述抽取的名志愿者中任取名,求选到的志愿者年龄大于岁的人数的数学期望.
已知函数,.(1)求的最大值和最小正周期;(2)若,是第二象限的角,求.
集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有. (1)试判断=及是否在集合A中,并说明理由; (2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.
设为实数,函数,(1)当时,讨论的奇偶性;(2)当时,求的最大值.