已知直线过椭圆E:的右焦点,且与E相交于两点.(1)设(为原点),求点的轨迹方程;(2)若直线的倾斜角为,求的值.
已知平面上的动点P(x,y)及两定点A(-2,0),B(2,0),直线PA,PB的斜率分别是k1,k2,且k1·k2=-.(1)求动点P的轨迹C的方程;(2)已知直线l:y=kx+m与曲线C交于M,N两点,且直线BM、BN的斜率都存在,并满足kBM·kBN=-,求证:直线l过原点.
如图,在四棱锥中,底面四边长为1的菱形,, , ,为的中点,为的中点(Ⅰ)证明:直线;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离。
已知,数列的前项和为,点在曲线上,且(1)求数列的通项公式 (2) 求证:
国家公务员考试,某单位已录用公务员5人,拟安排到A、B、C三个科室工作,但甲必须安排在A科室,其余4人可以随机安排。(1)求每个科室安排至少1人至多2人的概率; (2)设安排在A科室的人数为随机变量X,求X的分布列和数学期望。
设函数(1)求函数的最小正周期;(2)若函数的图像与函数的图像关于原点对称,求的值。