据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
已知,(1) 若,求tan x;(2) 若,求的最大值.
(本小题满分14分)已知双曲线的离心率为,右准线方程为。(Ⅰ)求双曲线C的方程;(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.
(本题14分) 某公司将进货单价为8元一个的商品按10元一个销售,每天可以卖出100个,若这种商品的销售价每个上涨一元,则销售量就减少8个.(1)求销售价为13元时每天的销售利润;(2)如果销售利润为336元,那么销售价上涨了几元?(3)设销售价上涨x元()试将利润y表示为x的函数,并求出上涨几元,可获最大利润.
(本题14分) 已知函数(其中常数a,b∈R),是奇函数. (1)求的表达式;(2)讨论的单调性,并求在区间[1,2]上的最大值和最小值.
(本题14分) 如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:直线BM⊥平面A1B1M1