(本小题满分14分)设函数f(x) =" x2" + bln(x+1),(1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值;(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围;(3)若b = -1,,证明对任意的正整数n,不等式都成立
设,其中,已知满足 (1)求函数的单调递增区间; (2)求不等式的解集。
各项为正的数列满足,, (1)取,求证:数列是等比数列,并求其公比; (2)取时令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值
函数, (1)若时,求的最大值; (2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点, (1)求椭圆方程; (2)以为直角顶点,边与椭圆交于两点,求面积的最大值.
如图,已知平面,为等边三角形, (1)若平面平面,求CD长度; (2)求直线AB与平面ADE所成角的取值范围.