已知数列中,,且当时,函数取得极值。(1)若,求数列的通项公式;(2)设数列的前项和为,试证明:时,.
如图所示,正方形和矩形所在平面相互垂直,是的中点.(I)求证:;(Ⅱ)若直线与平面成45o角,求异面直线与所成角的余弦值.
设命题:关于x的函数为增函数;命题:不等式对一切正实数均成立. (1)若命题为真命题,求实数的取值范围;(2)命题“或”为真命题,且“且”为假命题,求实数的取值范围.
若点在直线上,求经过点,且与直线平行的直线的方程。
如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点.(I)求圆弧的方程;(II)已知直线:与“葫芦”曲线交于两点.当时,求直线的方程.
设过点的直线与椭圆相交于A,B两个不同的点,且.记O为坐标原点.求的面积取得最大值时的椭圆方程.