(本小题满分13分)已知函数(1)当时,求曲线处的切线方程;(2)设的两个极值点,的一个零点,且证明:存在实数按照某种顺序排列后构成等差数列,并求.
在中,分别是角的对边,且 (1)求的面积; (2)若,求角。
如图,在棱长为a的正方体ABCD—A1B1C1D1中,M为A1D中点,N为AC中点. (1)求异面直线MN和AB所成的角; (2)求证:MN⊥AB1;
(普通班)设函数,其中常数;(1)讨论的单调性;(2)若,当,恒成立,求的取值范围。 (实验班)已知椭圆(0<b<2)的离心率等于抛物线(p>0). (1)若抛物线的焦点F在椭圆的顶点上,求椭圆和抛物线的方程; (2)若抛物线的焦点F为,在抛物线上是否存在点P,使得过点P的切线与椭圆相交于A,B两点,且满足?若存在,求出点P的坐标;若不存在,请说明理由.
(普通班)已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B. (1)求椭圆C的标准方程; (2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围. (实验班)已知函数R). (Ⅰ)若,求曲线在点处的的切线方程; (Ⅱ)若对任意恒成立,求实数的取值范围.
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.